Predicate Abstraction for Object-Oriented
Programs

SeungJoon Park!® Willem Visser’»®> Phil Oh?3

1. Research Institute for Advanced Computer Science (RIACS)
2. Caelum Research Corporation
3. Automated Software Engineering Group, NASA Ames Research Center
{spark,wvisser,oh }@ptolemy.arc.nasa.gov

Abstract. This paper presents an automated abstraction technique for
abstracting software programs. The technique extends and applies pred-
icate abstraction to general-purpose object-oriented programs. Each of
state-transition statement in a concrete program is abstracted with re-
spect to the user-guided predicates. The abstraction algorithm consists
of the following steps: (1) Compute pre-images of abstraction predicates
with respect to a given statement, (2) Map the pre-images into abstract
domain, (3) Generate an abstract statement which sets the values of
abstract variables using the conditions of the abstracted pre-images. An
automated decision procedure which checks the validity of logical expres-
sions is used to compute sound abstraction automatically. This paper also
proposes a solution on the use of predicate abstraction in object-oriented
paradigm. The techniques have been implemented in an automated pro-
totype tool for Java which generates abstract programs at the source
level.

1 Introduction

Model checking software systems often suffers from state space explosion
and this problem is even more acute for checking actual source code.
Experienced verification engineers may manipulate the code to obtain
an abstracted system that can be model checked. However, such manual
abstraction is very difficult and time consuming: it may require a lot of
manual reasonings, which delays the verification process significantly, and
the human reasonings can be error-prone leading to false positives.

This paper presents an automated abstraction technique for abstract-
ing software programs. The technique extends and applies predicate ab-
straction to general-purpose object-oriented programs. Predicate abstrac-
tion is a mapping of a concrete state transition system to an abstract state
transition system, whose state corresponds to the truth values of a set
of predicates in concrete state. The abstraction technique provides a way

of combining theorem proving and model checking for the verification of
unbounded systems.

Predicate abstraction was originally proposed to be used for construct-
ing a reachable abstract state space on-the-fly [4, 3]. Unfortunately, soft-
ware systems usually have very large state spaces even in the abstract
domain, which is very expensive to search exhaustively using decision pro-
cedures. Moreover, computing the abstract state space on-the-fly makes
it difficult to use state-of-the-art model checking techniques such as sym-
metry reduction, partial order reduction, or hash compaction.

Our approach to the verification is to generate an abstract program
based on predicate abstraction then apply model checking. We abstract
each of state-transition statement in a concrete program instead of com-
puting the abstract state space of the program. Since each concrete state-
ment is abstracted to an abstract statement, the abstract program would
have a very similar class structures and control flows to those of the con-
crete program. This clear correspondence between abstract and concrete
statements in the program helps the user to trace an error in concrete do-
main when model checking finds an error trace in the abstract program.
In addition, the computation cost of the abstraction is proportional to
the size of program rather than the size of the reachable state space.

We have been developing an automated prototype tool for Java which
generates an abstract program at the source level. We allow the user to
specify abstraction by removing concrete variables in the program and/or
adding new abstract variables which are defined in terms of concrete vari-
ables. The predicate abstraction is used for mapping one or more variables
in large or unbounded ranges to an abstract boolean variable. Once the
abstraction specified, our tool automatically computes an abstract pro-
gram with the new abstract variables and unremoved variables in the
concrete program (current prototype tool supports adding boolean types
only).

For a given Java program, the user provides predicate abstractions to
have the tool construct an abstract Java program. Then, the user may
apply a model checker to the abstract program to check corresponding
properties in abstract domain. Our abstraction algorithm consists of the
following steps: (1) Compute pre-images of abstraction predicates with
respect to a given statement, (2) Map the pre-images into abstract do-
main, (3) Generate an abstract statement which sets the values of abstract
variables using the conditions of the abstracted pre-images. To compute
sound abstraction automatically, we use an automated decision procedure
which checks the validity of logical expressions [1].

Our current prototype tool supports only a subset of Java syntax.
It does not allow predicate abstraction depending on array variables or
local variables. The tool does not support abstraction on the variables
which are used as parameters for method calls. The tool requires the user
provide the same predicate as in a Boolean condition in the program if
he/she wants to abstract any part of the condition, though we expect this
restriction will be lifted soon.

Related work

We believe that our work is the first application of the predicate abstrac-
tion to a real programming language. However, there has been similar
work by others in different frames. Colon and Uribe [2] use decision pro-
cedures to generate finite-state abstractions of transitions of a system with
respect to a set of predicates. Saidi and Shankar [7] did similar work using
PVS. Both of the work require use of only global variables to describe a
system in simple languages similar to guarded commands.

We aim to abstract object-oriented programs and propose solutions
for dealing with object-orientedness. In addition, we exploits pre-images
of the given predicates for the computation of abstract statements. This
enables us to obtain accurate abstract statement without using the two-
folded state representation (in terms of the current and the previous
states) as in [7].

The Bandera tool from Kansas University [5] uses techniques to ab-
stract the data domain of a variable in Java program using PVS decision
procedure. However, the technique is limited for reduction of the data
range of a variable to a smaller range. The novelty of our approach lies
in the fact that we can abstract a system with respect to predicates over
multiple variables and even over more than one class.

Namjoshi and Kurshan [6] have focused on a refinement technique
for finding predicate abstraction criteria automatically. They used simple
syntactic rewriting techniques to compute abstract programs.

2 Abstracting Programs

The transition-based abstraction limits the scope of abstraction to each
statement in the program, which could result in a less accurate abstraction
than that based on state space abstraction. However, we obtain an as
accurate abstract statement as possible by computing pre-images of the
abstraction predicates with respect to a concrete statement and use them
as guard conditions of the abstract state transition.

This section first explains the detailed abstraction algorithm on as-
signment statements, which are typical statements that change the state
of the program. Then we extend the predicate abstraction to object-
oriented programs.

2.1 Abstracting assignment statements

Once the user annotates abstraction by removing some of the concrete
variables in the program and/or adding new abstract variables, the ab-
stract program will have new abstract variables and unremoved variables
in the concrete program. Suppose a program has an integer variable z and
the user wants to abstract the program by removing the variable and in-
stead adding a new boolean variable defined by a predicate B =z > 0. In
the abstract program, there will be a new boolean variable b whose truth
value corresponds to the predicate B. Let us first consider an assignment
statement x = 2.

A naive way to compute the abstract statement is to check the post-
condition of the assignment. The post-condition x = 2 of the assignment
implies the predicate B so the corresponding abstract statement would
be b = true. What about another assignment x = x + 17 For this assign-
ment, checking post-condition is not good enough to find the abstract
assignment because the condition does not imply either B or —B, which
would lead to an abstract statement setting the value of b to be nonde-
terministic.

However, we can use pre-images of the abstract predicate to obtain
a more accurate abstract statement. A pre-image of a predicate with
respect to a transition is a set of states which will lead to a state that
satisfies the predicate by the transition. The pre-image of a predicate
by an assignment can be easily computed by substituting the lefthand-
side variable of the assignment by the righthand-side expression into the
predicate. For example, the pre-image of B with respect to the transition
z = z+1isx+1 > 0 and that of - B is z+1 < 0. Once we have pre-images,
we can attempt to generate an abstract statement of the assignment,

if (x+1 > 0) then b = true; (1)
else if (x + 1 < 0) then b = false;.

Unfortunately, the above abstract statement is not meaningful if the
variable x needs to be abstracted out from the program. In such case, the
pre-images in the concrete domain need to be mapped into corresponding
conditions in the abstract domain. Because we aim to compute sound

over-approximation of the system, the pre-image conditions should be re-
placed by stronger conditions (under-approximation) in terms of abstract
variables. An accurate mapping of concrete expression to abstract domain
can be computed using the technique proposed in [3]. Intuitively, the con-
dition z + 1 > 0 can be replaced by b because B = x + 1 > 0 is valid.
However, there is no such stronger condition in terms of b that implies
the pre-image, x + 1 < 0. Therefore, we set b to be a nondeterministic
boolean value (we use a notation, randomBool') for the latter case:

if b then b = true; (2)
else b = randomBool;.

Figure 1 shows the abstraction algorithm for converting an assignment
statement lvar = rexp. The abstract statement to be generated consists
of two parts: one for the assignment to lvar itself and the other for the
assignments to new abstract variables that depend on lvar. If the variable
lvar in the assignment has been removed, then the first part is not neces-
sary. Otherwise, we generate an assignment to lvar by the same rexp if the
expression does not contain any removed variables, or by the truth value
that still can be decided by a validity checker. Note that if var ranges
over a large data domain (such as unbounded integer), assigning random
value is not practical for model checking. In this case, our tool guides the
user to remove the variable [var and provide abstraction predicates which
keep necessary information about the variable.

For each of abstraction predicate depending on [lvar, a truth value
is assigned to the Boolean variable. We first compute the pre-images of
the predicate and the negation of the predicate with respect to the origi-
nal assignment. Then we compute their under-approximation U() in the
abstract domain, and use them as guard conditions of the abstract as-
signment.

2.2 Conditions

Besides the state changing assignment statements, condition expressions
in the program are also affected by the abstraction if they contain some
variables to be removed. As our current tool does, a simple solution is
to require the user specify predicate abstractions for such conditions in
the program. Then the conditions in the program are replaced by the
matching boolean variables in the abstract program.

! This will be recognized by a model checker as a nondeterministic choice when it
explores the state space of the abstract program.

if lvar is not removed
if rexp does not contain any removed variables
generate “lvar = rexp;”
else if lvar is boolean and rexp is valid
generate “lvar = true;”
else if lvar is boolean and —rezp is valid
generate “lvar = false;”
else
generate “lvar = randomValue;”
for each abstraction predicate P;:
if P; depends on lvar
compute pre-images pre(P;) and pre(—F;)
compute under-approximation U(pre(P;)) and U(pre(—F;)) in abstract domain
generate “if U(pre(P;)) b; = true;
else if U(pre(—F;)) b; = false;
else b; = randomBool;”

Fig. 1. Abstracting an assignment statement: lvar = rexp with respect to abstraction
predicates P;

The requirement can be lifted if we map the condition into abstract
domain using the same computation as for converting pre-images into
abstract domain. This will, however, introduce additional nondeterminism
in the control flow of the abstract program. For instance, we could have
an abstract if-statement with nondeterministic conditional branches like:

if (randomBool) then St else Sg;.

2.3 Dealing with object-orientedness

So far, we explored the way of computing abstraction for a state changing
statement. This subsection explains how we extend the predicate abstrac-
tion in object-oriented paradigm.

For each class, the user can specify abstraction by defining predicates
that depend on field variables in the class. We call this kind of abstraction
local to a class. For verification of software programs, abstractions are
often needed over small parts of the program. This local abstraction can
be useful for abstracting subcomponents of a program when the whole
program is too complicated to be abstracted globally.

Not only inside a single class but also over more than one class, the
abstraction can be defined. There are many cases where abstract relations
between variables from different classes are desired for the verification. We
allow the user to specify new abstract variables which depend on variables

from two different classes. For example, if class A has a field x and class
B has a field y then we can define an abstraction predicate A.x > B.y.
We call this inter-class abstraction.

One of the major problems in dealing with object-oriented programs
using the predicate abstraction is referenced variables. For local abstrac-
tions the abstraction variables are declared in the class which they belong
to. Then, whenever the concrete variables in the definition of abstraction
are modified in an object, we generate an abstract statement with the
same reference to the object.

Unfortunately, building abstract program for inter-class abstraction is
more involved than for the local abstraction in object-oriented paradigm.
The abstract code needs to allow for many instantiations of objects of each
different class to be handled correctly. For each inter-class abstraction, we
generate an additional class in the abstract program, which contains a set
of new boolean variables. The set of boolean variables correspond to the
specified predicate for all the possible combinations of the instantiated
objects in the relevant classes.

A B
pred(al,bl) bly
1.
ax pred(a2,bl)
b2y
az2.x
b3y

Fig. 2. Abstract Boolean variables for inter-class abstraction A.xz > B.y

For instance, the set of predicates for an inter-class abstraction By =
A.x > B.y is shown in Figure 2 and its new class definition in Figure 3.
The two-dimensional array of “pred” contains the truth value of the pred-
icate for each pair of objects of class A and of class B. The method setA()
is called from the constructor of class A so that an instantiation of class

A will create new boolean variables with an index to the new object.
The method getA() is used by the abstract statements to obtain the cor-
responding index of the “pred” for a given object or the corresponding
object for a given index.

class BI {
static public boolean[][] pred = new boolean[MAX] [MAX];

static public void setA(A objA){
/* initialize abstraction variables and
set index for a new object of class A */ }
static public int getA(A objA){
/* return the index for object objA */ }
static public objA getA(int index){
/* return the object objA at the index */ }
static public void setB(B objB){
/* initialize abstraction variables and
set index for a new object of class B */ }
static public int getB(B objB){
/* return the index for object objB */ }
static public objB getB(int index){
/* return the object objB at the index */ }

Fig. 3. A class declaration for an inter-class abstraction

Whenever any variables in the definition of inter-class are modified,
the corresponding set of the boolean variables need to be modified so
that they are consistent with the values of concrete variables in the pro-
gram. Suppose we have a statement in the concrete program aobj.z + +,
where aobj is an object of class A. Because this assignment possibly
changes the “pred” values of the inter-class abstraction B corresponding
to the aobj, the an abstract assignment statement to the boolean variables
By.pred[getA(aobj)][*].

3 Automated Abstraction Tool

The abstraction tool is written in Java and uses the Java parser of Ban-
dera system [5]. To use our abstraction tool, the user may specify the
abstraction using methods of a special class “Abstract.” To remove a field
variable var in a class, the user annotates Abstract.remove (var) ; some-
where in the class. To add a new Boolean variable named str defined by a
predicate ezprin a class, the user annotates Abstract.addBoolean("str",
expr) ; to the class. Inter-class abstraction can be declared using the same
annotation where the variables in the definition are visible.

For computing abstraction, the tool uses Stanford Validity Checker
(SVQC) [1], which is an automated decision procedure to check the valid-
ity of formulas expressed in a subset of first-order logic. We transform
logical expressions derived from Java statements (pre-images) into SVC
format to use the validity checker. For example, for computing the ab-
stract assignment (1) in the previous section, the logical expression of
z>0= 2+ 1> 0 is transformed into SVC format (=> (> x 0) >
(+ x 1) 0)), then passed to SVC through a foreign function call. The
logic for SVC includes Boolean and uninterpreted functions and linear
arithmetic and inequalities. Therefore, our abstraction tool cannot deal
with any Java expression beyond this logic.

4 Example: Bakery Mutual Exclusion Algorithm

This section demonstrates how a real Java program is abstracted by our
abstraction tool on the widely-used Bakery mutual exclusion algorithm.
Figure 4 presents a part of the Bakery algorithm written in Java. The
program has been annotated using Abstract methods for removing the
unbounded integer y1 in the Process1 class and adding two Boolean vari-
ables, y1EQO and y1Pos to the class. In addition, an inter-class abstraction
variable y1LTy2 has been defined in the main thread.

Figure 5, Figure 6, and Figure 7 in the following show the abstract
Java program generated by the tool. First, Figure 5 shows the field vari-
able declarations and their initial values for the new abstract variables
y1EQO and y1Pos, where SVC has been used to decide the initial values.
The removed variable y1 has been commented out and the unchanged
variable p2 remains the same. The constructor Process1() has been
added in order to set the parameters of the inter-class abstraction vari-
able y1LTy2 whenever a Processl object is instantiated. (See Section 2.3
for the details.)

Figure 6 shows the abstract code for the method run(). Each of three
statements has been transformed into a set of statements encapsulated
by beginAtomic () and endAtomic (). This atomicity is recognized by the
JPF model checker. Note that, the abstract program can be longer than
the original program but not necessarily has more states to be checked.
The first set of statements replaces the original assignment yl = p2.y2
+ 1, which has been commented out because the variable y1 no longer
exists in the abstract program. The for-loop updates the inter-class ab-
straction variables in y1LTy2 by the original assignment. Note that in the
given Bakery program, there is only one such variable, y1LTy2[0] [0],

class Processl extends Thread{ class Process2 extends Thread{

public int y1 = 0; public int y2 = 0;
private Process2 p2; private Processl pi;
void SetThread(Process2 p){ p2 = p; } void SetThread(Processl p){ pl = p; }
public void run(){ public void run(){
Abstract.remove(yl); Abstract.remove(y2);
Abstract.addBoolean("y1EQO", yl1 == 0); Abstract.addBoolean("y2EQO0", y2 == 0);
Abstract.addBoolean("y1Pos", y1 > 0); Abstract.addBoolean("y2Pos", y2 > 0);
while (true) { while (true) {
yl = p2.y2 + 1; y2 = pl.yl + 1;
while (p2.y2 != 0 && y1 >= p2.y2); while (pl.yl != 0 && y2 > pl.y1);
yl = 0; y2 = 0;
}r} }r}

class Bakery {
public static void main(String args[]1){
Processl processl = new Processi();
Process2 process2 = new Process2();
processl.SetThread(process2);
process2.SetThread(processl);

Abstract.addBoolean2("y1LTy2", processl.yl < process2.y2);

processl.start();
process2.start();

T}

Fig. 4. Bakery mutual exclusion algorithm in Java

class Processl extends Thread{
// public int y1 = 0;
public boolean y1EQO true; // SVC valid: (=> (and (= y1 0)) (= y1 0))
public boolean ylPos = false; // SVC valid: (=> (and (= y1 0)) (not (> y1 0)))
private Process2 p2;
void SetThread(Process2 p){ p2 = p; }

// see the next figure for run().

Process1() { ylLTy2.setProcess1(this); }

Fig. 5. Abstracted Java program of the Bakery mutual exclusion algorithm (1)

public void run(){
while (true){

T}

Verify.beginAtomic();
// y1 =p2.y2 + 1;
for(int i = 0; i < y1LTy2.numProcess2; ++i){
if(i == yiLTy2.getProcess2(p2))
y1LTy2.pred[y1LTy2.getProcess1(this)] [i] = false;

else y1LTy2.pred[y1LTy2.getProcess1(this)][i] = Verify.randomBool();

}

if(p2.y2EQO0 || p2.y2Pos) ylEQO = false;

else ylEQO = Verify.randomBool();

if(p2.y2EQO || p2.y2Pos) yl1Pos = true;

else ylPos = Verify.randomBool();
Verify.endAtomic();

while (!p2.y2EQ0 &&

'y1LTy2.pred[y1LTy2.getProcessi(this)] [ylLTy2.getProcess2(p2)]){};

Verify.beginAtomic();
// y1 = 0;
for(int i = 0; i < y1LTy2.numProcess2; ++i){
if (y1LTy2.getProcess2(i).y2Pos)
y1LTy2.pred[y1LTy2.getProcess1(this)][i] = true;
else if(y1LTy2.getProcess2(i).y2EQ0 || !'y1LTy2.getProcess2(i).y2Pos)
y1LTy2.pred[y1LTy2.getProcess1(this)][i] = false;
else y1LTy2.pred[yl1LTy2.getProcess1(this)] [i] = Verify.randomBool();
¥
y1EQO = true;
y1lPos = false;
Verify.endAtomic();

Fig. 6. Abstracted Java program of the Bakery mutual exclusion algorithm (2)

because only one instance has been created for each class of Processl and
Process2. The following two if-statements updates the local abstraction
variables. The condition of the while-statement has been simply replaced
by the matching abstraction predicate?. Finally, the last set of statements
corresponds to the original assignment y1 = 0.

class yiLTy2 {
static final int MAX = 3;
static public boolean[][] pred = new boolean[MAX] [MAX];

static public int numProcessl = 0;
static public Process1i[] objProcessl = new Processi[MAX];
static public void setProcessl1(Processl obj){
objProcessi[numProcessi++] = obj; }
static public int getProcessl(Processl obj){
for(int i = 0; i < numProcessl; ++i)
if(obj == objProcessi[i]) return i;
return MAX + 1; }
static public Processl getProcessi(int i){
return objProcessi[i]; }

static public int numProcess2 = 0;
static public Process2[] objProcess2 = new Process2[MAX];
static public void setProcess2(Process2 obj){
objProcess2[numProcess2++] = obj; }
static public int getProcess2(Process2 obj){
for(int i = 0; i < numProcess2; ++i)
if(obj == objProcess2[i]) return i;
return MAX + 1; }
static public Process2 getProcess2(int i){
return objProcess2[i]; }

Fig. 7. Abstracted Java program of the Bakery mutual exclusion algorithm (3)

Figure 7 shows a class definition for the inter-class abstraction pred-
icate y1LTy2. The truth values of the predicates are maintained in the
array variable pred[1[] as explained in Section 2.3. The object refer-
ences Process1[] and Process2[] and the initial value of the predi-
cates are set by the corresponding constructors using the setProcessi()
and setProcess2() methods. The getProcess1() and getProcess2()
methods are called from the abstract assignment statements to refer the
corresponding pred[] [] abstract variables.

2 We currently require the user to provide the same predicate as an abstraction crite-
rion as explained in Section 2.2

5 Conclusion

We applied and extended predicate abstraction for object-oriented pro-
grams. Using the techniques, we have been able to obtain abstract Java
programs of several examples automatically. Moreover, use of the abstrac-
tion tool allows for a sound approximation of the concrete program using
an automated validity checker and it helps to avoid error-prone abstrac-
tion by human reasoning.

However, the technique does not necessarily renders the most accurate
abstract interpretation of a given program and the user must give a rea-
sonable abstraction guidance to generate a meaningful abstract program
for checking desired properties. If the guidance is not good enough, the
result will be a too coarse abstract program which can not preserve the
properties being checked.

Future work includes extension of the inter-class abstraction for more
than two classes and constructing multi-valued abstract variables from
a set of predicates. We are currently working on solutions for additional
aliasing problem due to arrays and abstraction involving array variables.

Acknowledgment

We thank Clark Barrett, Satyaki Das, and David Dill at Stanford Uni-
versity for their help on SVC, and John Hatcliff, Corina Pasareanu, and
Robby at Kansas State University for providing the Java parser in Ban-
dera system.

References

1. C. Barrett, D. Dill, and J. Levitt. Validity checking for combinations of theories
with equality. In Formal Methods In Computer-Aided Design, volume 1166 of Lecture
Notes in Computer Science, pages 187-201. Springer-Verlag, November 1996.

2. M. Col6n and T. Uribe. Generating finite-state abstractions of reactive systems
using decision procedures. In Proceedings of the 10th Conference on Computer-
Aided Verification, volume 1427 of Lecture Notes in Computer Science, pages 293—
304. Springer-Verlag, July 1998.

3. S. Das, D. Dill, and S. Park. Experience with predicate abstraction. In Computer
Aided Verification, 11th International Conference, CAV’99, LNCS 1633, pages 160—
171, July 1999.

4. S. Graf and H. Saidi. Construction of abstract state graphs with pvs. In Orna Grum-
berg, editor, Computer Aided Verification, 9th International Conference, CAV’97,
volume 1254 of Lecture Notes in Computer Science, pages 72-83, Haifa, Israel, June
1997. Springer-Verlag.

5. John Hatcliff, Matthew Dwyer, and Shawn Laubach. Staging static analyses using
abstraction-based program specialization. In Proceedings of Principles of Declar-
ative Programming: 10th International Symposium, PLILP’98, September 1998.
LNCS 1490.

6. Kedar Namjoshi and Robert Kurshan. Syntactic program transformations for auto-
matic abstraction. In Computer Aided Verification, 12th International Conference,
CAV’2000, LNCS 1855, pages 435—449, July 2000.

7. H. Saidi and N. Shankar. Abstract and model check while you prove. In Proceedings
of the 11th Conference on Computer-Aided Verification, volume 1633 of Lecture
Notes in Computer Science, pages 443-454. Springer-Verlag, July 1999.

